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Abstract. A Bus Route Model (BRM) can be defined on a one-dimensional lattice, where buses are rep-
resented by “particles” that are driven forward from one site to the next with each site representing
a bus stop. We replace the random sequential updating rules in an earlier BRM by parallel updating
rules. In order to elucidate the connection between the BRM with parallel updating (BRMPU) and the
Nagel-Schreckenberg (NaSch) model, we propose two alternative extensions of the NaSch model with space-
/time-dependent hopping rates. Approximating the BRMPU as a generalization of the NaSch model, we
calculate analytically the steady-state distribution of the time headways (TH) which are defined as the
time intervals between the departures (or arrivals) of two successive particles (i.e., buses) recorded by a
detector placed at a fixed site (i.e., bus stop) on the model route. We compare these TH distributions with
the corresponding results of our computer simulations of the BRMPU, as well as with the data from the
simulation of the two extended NaSch models. We also investigate interesting kinetic properties exhibited
by the BRMPU during its time evolution from random initial states towards its steady-states.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion –
05.60.-k Transport processes – 89.40.+k Transportation

1 Introduction

Systems of interacting particles driven far from equilib-
rium are of current interest in statistical physics [1–5].
Microscopic models of such systems often capture some as-
pects of vehicular traffic. In such “particle-hopping” mod-
els of vehicular traffic the particles represent vehicles and
the nature of the interactions among these particles is de-
termined by the manner in which the vehicles influence
the motion of each other [6–8]. The dynamics of these
models are often formulated in terms of “update rules”
using the language of cellular automata (CA) [9]. For ex-
ample, the Nagel-Schreckenberg (NaSch) model [10,11] is
the most popular minimal CA model of vehicular traffic
on highways while, to our knowledge, the first CA model
of city traffic was developed by Biham, Middleton and
Levin [12]. The results obtained for these models, using
the techniques of statistical mechanics, are not only of
fundamental interest for understanding truly nonequilib-
rium phenomena but may also find practical use in traf-
fic science and engineering. [13–15]. Among such results
are the time-headway and distance-headway distributions.
The time-headway (TH) is defined as the time interval
between the departures (or arrivals) of two successive
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vehicles recorded by a detector placed at a fixed posi-
tion on the route while the distance between the succes-
sive vehicles can be defined as the corresponding distance-
headway (DH). The distributions of TH and DH not only
contain detailed informations on the nature of the spatio-
temporal organization of the vehicles but are also of prac-
tical interest to traffic engineers because larger headways
provide greater margins of safety whereas higher capaci-
ties of the highway require smaller headways.

In a 1998 paper, O’Loan et al. [16] have developed
a one-dimensional lattice model of bus-route where the
buses are represented by particles which move from one
site to the next; each site of this model represents a bus
stop along the route. The motion of the buses in this bus
route model with random sequential updating (BRMRSU)
is strongly influenced by the passengers waiting at the bus
stops. The BRMRSU model may be viewed as a general-
ization of a simple particle-hopping model, namely, the
totally asymmetric simple exclusion process (TASEP) by
coupling the dynamics of the particles to another new vari-
able which represents the presence (or absence) of passen-
gers waiting at the bus stops. The bus route model in [16]
does not deal with overcrowded buses; it implicitly as-
sumes that either the buses have infinite capacity or that
the passenger arrival rate is slow enough to avoid over-
crowding.
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The BRMRSU exhibits a Bose-Einstein-condensation-
like phenomenon which has been observed earlier in the
TASEP and in the NaSch model when quenched random
hopping rates are associated with the particles [17–19].
However, unlike the stable Bose-Einstein-condensed states
observed at sufficiently low densities in the TASEP (and in
the NaSch model) with random hopping rates, those in the
BRMRSU are metastable. The main characteristic of the
spatially-inhomogeneous Bose-Einstein-condensed state is
the existence of a macroscopically long gap in front of a
cluster of vehicles led by the slowest one. In finite systems,
for small λ (λ is the rate of passenger arrival at a bus
stop), the bus clusters (or, equivalently, the gaps between
clusters) in the BRMRSU exhibit interesting coarsening
phenomena as the system evolves from a random initial
state. O’Loan et al. [16] find that, after sufficiently long
time, the typical size of the large gaps in the system grows
with time t according to a power growth law t1/2.

In this paper we use a BRM with parallel updating
(BRMPU) which is obtained from the BRMRSU [16] by
replacing the random sequential updating rule with par-
allel updating, with the aim of relating it with the NaSch
model where updating is done in parallel. We also pro-
pose here two extensions of the NaSch model (from now
onwards referred to as the models Y and Z) by replacing
the constant hopping rates with two different time-/space-
dependent hopping rates which we shall specify explicitly
in Section 2. We have computed the TH distributions in
the steady-states of the BRMPU as well as in the models
Y and Z through computer simulations. Comparison of
these distributions are shown in section III. Such compar-
isons elucidate the connection between the BRMPU and
the NaSch model. Then, approximating the BRMPU as a
generalization of the NaSch model with a time-dependent
hopping rate for the buses, we calculate in Section 4 the
TH distribution in the BRMPU from the corresponding
analytical expression in the NaSch model. We compare
the TH distributions thus derived from analytical con-
siderations with the corresponding results of computer
simulations of the BRMPU. These comparisons do not
merely point out the regimes of validity of our analytical
results but also indicate the differences arising from the
different natures of the low-density steady-states in the
BRMPU and the NaSch model. Finally, we investigate in
Section 5, interesting kinetic phenomena at low densities
of the BRMPU by computing the appropriate correlation
functions (to be defined in Sect. 5). We extract the uni-
versal laws governing the growth of the clusters of buses
in finite samples of BRMPU at low densities where the
system approaches a Bose-Einstein-like “condensed” state
evolving from random initial states.

2 The models and methods

Let us first summarize how the totally asymmetric exclu-
sion process (TASEP) [1–3], the NaSch model [10] and the
bus route models [16] are defined.

2.1 TASEP and the NaSch model

In the “particle-hopping” models of traffic the position,
speed, acceleration as well as time are treated as discrete
variables. In this approach, a lane is represented by a one-
dimensional lattice. Each lattice site represents a “cell”
which can be either empty or occupied by at most one
“vehicle” at a given instant of time. At each discrete time
step t → t + 1, the state of the system is updated fol-
lowing a well-defined prescription. In the TASEP a ran-
domly chosen particle can move forward, by one lattice
spacing, with probability q if the lattice site immediately
in front of it is empty. In the NaSch model, the speed v
of each vehicle can take one of the vmax + 1 allowed in-
teger values v = 0, 1, ..., vmax. If the random-sequential
updating scheme of the TASEP is replaced by parallel up-
dating then it becomes identical to the NaSch model with
vmax = 1 and random braking probability p = 1− q. Our
interest in the NaSch model is to unravel its connections
to the BRM. For this purpose, we only need the NaSch
model with vmax = 1. Thus in what follows, by the NaSch
model, we shall mean NaSch model with vmax = 1, unless
explicitly stated otherwise.

2.2 BRM with parallel and random-sequential
updatings

In the BRM [16] each of the lattice sites represents a
bus stop and these stops are labeled by an index i (i =
1, 2, ..., L) [16]. In each step of updating, each bus attempts
to hop from one stop to the next. Note that in the TASEP
and the NaSch model one can label the lattice sites by the
index i (i = 1, 2, ..., L) and describe the state of each of the
sites by associating a variable σi with it; σi = 1 if the site i
is occupied and σi = 0 if the site i is empty. In contrast, in
the BRM, two binary variables σi and φi are assigned to
each site i: (i) If the site i is occupied by a bus then σi = 1;
otherwise σi = 0. (ii) If site i has passengers waiting for a
bus then φi = 1; otherwise φi = 0. A site cannot have both
σi = 1 and φi = 1 simultaneously since a site cannot have
simultaneously a bus and waiting passengers. The state of
the system is updated according to the following random
sequential update rules: a site i is picked up at random.
Then, (i) if σi = 0 and φi = 0 (i.e, site i contains neither a
bus nor waiting passengers), then φ→ 1 with probability
λ, where λ is the probability per unit time of the arrival
(i.e. the arrival rate) of the first passenger at the empty
bus stop. (Arrival of the subsequent passengers does not
affect the time evolution.) (ii) If σi = 1 (i.e., there is a
bus at the site i) and σi+1 = 0, then the hopping rate µ
of the bus from site i to i + 1 is defined as follows: (a) if
φi+1 = 0, then µ = α but (b) if φi+1 = 1, then µ = β,
where α is the hopping rate of a bus onto a stop which
has no waiting passengers and β is the hopping rate onto
a stop with waiting passenger(s). Generally, β < α, which
reflects the fact that a bus has to slow down when it has
to pick up passengers. In the BRMRSU one can set α = 1
without loss of generality. However, for reasons which will
become clear soon, we shall keep β < α < 1. When a bus
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hops onto a stop i with waiting passengers, φi is reset to
zero as the bus takes all the passengers. Note that the
density of buses c = N/L is a conserved quantity whereas
that of the passengers is not.

In the BRMPU the random sequential update rules of
the BRMRSU are replaced by parallel updating but all the
other aspects of the updating remain unchanged. BRMPU
is related to the NaSch model in two extreme limits of λ: In
the unphysical limit of λ = 0 (which means the passengers
never arrive at a bus stop), the BRMPU reduces to the
NaSch model with vmax = 1 and q = 1 − p = α. In the
opposite limit of maximum value of λ in BRMPU, λ =∞
(very fast rate of passenger arrival at a bus stop), the
BRMPU is equivalent to the NaSch model with vmax = 1
and q = 1 − p = β. Note that since the time between
two updating steps is the unit of time, all values of λ ≥ 1
are synonymous with λ = ∞. This is because any value
of λ ≥ 1 will bring at least one passenger to an empty
bus stop between two updating times. Interesting results
in the model occur only for values of λ� 1.

Note that if we take α = 1, then the limit λ = 0 would
correspond to the limit q = 1 (i.e., p = 0) of the NaSch
model which is a deterministic CA and does not exhibit
jammed states [20]. Since we are interested in exploring
the connection between the BRMPU and the NaSch model
with arbitrary q throughout this paper we consider α < 1.

2.3 Extended NaSch models

It has been realized over the last few years that different
modifications of the braking rule in the NaSch model
can lead to different types of phenomena which are
interesting from the perspective of statistical physics. For
example, such modifications can lead to self-organized
criticality [21] as well as metastability and phase
segregation [22,23]. Klauck and Schadschneider [24]
considered a model where the particle is allowed to
hop forward by one site or by two sites with two
different hopping rates. It has also been established
that assigning quenched random hopping rates can
lead to the formation of clusters of vehicles [17–19].

In a similar vein, we now extend the NaSch model by
replacing its constant (time-independent) hopping rate q
by two other alternatives which are intended to mimic the
situations in the BRMPU.

In one of these two alternatives (from now onwards
referred to as model Y) the hopping rate of a vehicle at a
given site x is given by

qx = β + (α− β)e−ΛTx+1 (1)

where Λ > 0 is a constant and Tx+1 is the time interval
that has elapsed since the leading vehicle (LV) left the
site x+ 1. Tx+1 is therefore the time interval between the
departure of LV and the arrival of the following vehicle
(FV) at the site x+ 1.

In the other extended NaSch model (from now onwards
referred to as model Z) the hopping rate of the n-th vehicle

depends on its instantaneous DH ∆xn:

qn = β + (α − β)e−Λ ∆xn/β (2)

where β (< 1) is a constant. At first sight it may seem
more appropriate to have v, rather than β, in the expo-
nential in equation (2). However, in Section 3 and Fig-
ure 3b, we show that the extended NaSch model with the
hopping rates of the form (2) is a good approximation of
the BRMPU in a wide range of circumstances.

Both the models Y and Z reduce to the NaSch model
with constant hopping rates α in the limit Λ = 0, and
reduce to the NaSch model with a constant hopping rate
β in the limit Λ =∞.

Models Y and Z are devised to capture the essential
features of a bus-route model where the time- /space-
dependent hopping rates of the vehicles depend on the
presence or the absence of waiting passengers.

2.4 Methods of simulation

For the numerical calculations of the various quantities
through computer simulations, we let the system evolve
from a random initial state following the appropriate up-
dating rules mentioned above. We compute the quanti-
ties relevant for the investigation of the kinetics of the
system during the time-evolution of the system towards
its steady-state. After the system reaches steady-state, we
compute its steady-state properties, e.g., the TH distribu-
tion, by letting it evolve for the next 5×104 time steps to
obtain the required data. We then repeat the calculation
with a different random initial state and, finally, average
the data over 100 different random initial states of the
system.

The largest systems we have simulated have a total
length L = 105; each sample of these was allowed to evolve
up to a maximum of 106 time steps which is not long
enough to reach the corresponding steady-state but were
used for the study of the kinetics. For the computation of
the average steady-state properties we have used smaller
systems (typically L = 104) which require shorter time to
reach steady-state. In all our simulations we have used a
periodic boundary condition.

3 Results of the extended NaSch models
Y and Z

In Figure 1 we plot the TH distributions in the models
Y and Z for Λ = 0.01, α = 0.9, β = 0.5 at two different
densities, namely, c = 0.1 and c = 0.5. Note that in the
special case Λ = 0, both the models Y and Z as well as
the BRMPU reduce to the NaSch model with q = α. The
data in Figure 1 establish that, when Λ is sufficiently small
(e.g., Λ = 0.01), the results of the models Y and Z agree
well with those of the BRMPU at all densities for identical
values of the set of parameters.

In order to emphasize the effects of time-/space-
dependence of the hopping rates on the TH distribution
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Fig. 1. The TH distributions in the (a) model Y, and (b) model Z for densities c = 0.1(+) and c = 0.5(×) are compared against
the corresponding distributions in the BRMPU for c = 0.1(∗) and c = 0.5(�). The common parameters are Λ = λ = 0.01,
α = 0.9 and β = 0.5. The discrete symbols denote the numerical data obtained through computer simulations while the
continuous lines joining these points serve merely as guides to the eye.

we plot in Figure 2 the exact TH distributions in the
NaSch model with vmax = 1 for q = 0.9 and q = 0.5
at the same two densities as used in Figure 1. The ob-
servation that the TH distribution in the NaSch model
for q = 0.9, c = 0.5 is narrow can be explained by fact
that small noise (p = 0.1) gives rise to only a small width
of the δ-function-like TH distribution, centered at 2, that
one would observe at c = 0.5 in the deterministic limit
q = 1.0 of the NaSch model. Comparing Figure 2 with the
Figure 1 we find that, except for q = 0.9, c = 0.1, the TH
distributions in the NaSch model have much longer tail
than those in the BRMPU as well as in the model Y and
model Z for the parameters α = 0.9, β = 0.5.

Thus, the BRMPU is well-approximated by both the
models Y and Z at Λ as small as 0.01. However, we find a
larger difference between the TH distributions in the mod-
els Y and Z at larger values of Λ (see Fig. 3a). For λ ≥ 1
the BRMPU reduces to the NaSch model with q = β and
the corresponding TH distribution is in excellent agree-
ment with that in the model Z but differs significantly
from that in the model Y (see Fig. 3b).

The results in Figures 1, 2 and 3 show that in a certain
density regime, the BRMPU is well approximated by the
NaSch model with time-/space-dependent hopping rates.
We expect the passenger arrival rate λ of the BRMPU and
the hopping rate Λ in models Y and Z to be related. We
assume that the two are equal, even though we continue
to use the two different symbols in order to allow the pos-
sibility of a difference between them in future simulations.
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Fig. 2. The TH distributions in the NaSch model for q =
0.9, c = 0.5(×); q = 0.9, c = 0.1(+); q = 0.5, c = 0.5(�) and
q = 0.5, c = 0.1(∗). The discrete symbols denote the exact
results obtained analytically while the continuous lines joining
these points serve merely as guides to the eye.
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Fig. 3. The TH distributions in BRMPU, model Y and model Z for (a) Λ = λ = 0.5 and (b) Λ = λ = 1.0; the common
parameters being α = 0.9, β = 0.5. The continuous line and the dotted line correspond to c = 0.1 and c = 0.5, respectively, in
BRMPU, while the discrete data points denoted by the symbols + and ∗ correspond to c = 0.1 and c = 0.5, respectively, in
the model Z. The symbols × (connected by dashed line) and � (connected by dashed-dotted line) correspond to c = 0.1 and
c = 0.5, respectively, in the model Y.

4 Analytical results of the BRMPU

For analytical calculation of the TH distributions we label
the site (i.e., the bus stop) where the detector is located
by j = 0, the stop immediately in front of it by j = 1,
and so on. The detector clock resets to τ = 0 every time
a bus leaves the detector site. We begin our analytical
calculations by writing Pth(τ), the probability of a TH τ
between the LV and the FV of a pair, as

Pth(τ) =
τ−1∑
t1=1

P (t1)Q(τ − t1|t1) (3)

where P (t1) is the probability that there is a time interval
t1 between the departure of the LV and the arrival of the
FV at the detector site and Q(τ − t1|t1) is the conditional
probability given that the FV arrives at the detector site
t1 time steps after the departure of the LV, it halts for
τ − t1 time steps at that site.

Encouraged by the success of the models Y and Z in
capturing the TH distributions over moderate and high
density regimes, we now approximate the BRMPU as an
extended NaSch model with a time-dependent hopping
rate which is closely related to (but slightly different from)
those in the models Y and Z. Thus for our analytical calcu-
lation of Pth(τ) in the BRMPU, we approximately treat
it as an extended NaSch model (with vmax = 1) where
the hopping rate q, instead of being a constant, is a time-

dependent quantity given by the expression

q = β + (α− β)e−Λt1 . (4)

This form can be compared to those given in equations
(1) and (2).

The exact analytical expression for P (t1) in the NaSch
model (with vmax = 1) has been derived earlier [25,26]
using a 2-cluster approximation [11] which goes beyond
the simple mean field approximation. Following the same
arguments we now get

Pcl(t1) = C(1|0)q [C(0|0)q + p]t1−1 (5)

where q is given by (4) and C gives the 2-cluster
steady-state configurational probability for the argument
configuration; the underline under an argument of C im-
plies the associated condition. The expressions for the var-
ious Cs are given by [11,25,26]

C(1|0) = C(0|1) =
y

c
(6)

C(0|1) = C(1|0) =
y

d
(7)

C(1|1) = C(1|1) = 1− y

c
(8)

C(0|0) = C(0|0) = 1− y

d
(9)

where

y =
1
2q

(
1−

√
1− 4qcd

)
, (10)
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Fig. 4. The TH distributions in the BRMPU calculated analytically at densities (a) c = 0.1 (b) c = 0.5. The symbols
+,×, (∗) correspond to Λ = 0.01, 0.10, 0.50, respectively, in the 2-cluster approximation, while the symbols �, , ◦ correspond
to Λ = 0.01, 0.10, 0.50, respectively, in the simple mean field approximation. The common parameters are α = 0.9 and β = 0.5.
The discrete symbols denote the results obtained through analytic equation (3), while the continuous lines joining these points
serve merely as guides to the eye. Note also the different scales along both the axes in (a) and (b).

q = 1− p and d = 1− c.
On the other hand, in the simple mean field approx-

imation, the 2-cluster probabilities reduce to C(1|0) → c
and C(0|0)→ 1− c and, hence,

Pmf(t1) = cq[1− cq]t1−1. (11)

We shall calculate the TH distribution, Pth(τ), given in
(3), using the expression (5) (together with (7), (9) and
(10)) and then compare with the corresponding TH distri-
bution obtained by using (11), instead of (5), to emphasize
the importance of correlations.

In order to obtain Pth(τ), let us next calculate Q(τ −
t1 | t1). Again, following the arguments used earlier [26] in
the calculation of the TH distribution in the NaSch model,
we get

Q(τ − t1 | t1) = (1− ḡt1)pτ−t1−1q

+ ḡt1gq
[(ḡ)τ−t1−1 − (p)τ−t1−1]

ḡ − p (12)

where g is the probability that a vehicle moves in the next
time step (i.e., in the (t + 1)th time step) and ḡ = 1− g.
In the 2-cluster approximation

gcl = qC(1|0) (13)

which, in the simple mean field approximation reduces to

gmf = q(1− c). (14)

Substituting (5) and (12) into (3) and using (13) for g
and (4) for q (together with (6–9) for the configurational
probabilities and (10)), we get Pth(τ) in the 2-cluster ap-
proximation by carrying out the summation over t1 in (3)
numerically. We shall refer to this result as the 2-cluster
estimate of the TH distribution. Similarly, substituting
(11) and (12) into (3) and using (14) for g and (4) for q
(together with (6–9) and (10)) we get the simple mean
field estimate of Pth(τ) by again summing over t1 numer-
ically. Note that in both cases, Pth(τ), in addition to its
τ dependence, depends on parameters c, α, β, Λ.

In Figure 4 we show these analytic results for three
different values of Λ and two different values of densities
c. At sufficiently low density of buses, there is hardly any
difference between the 2-cluster estimate and the simple
mean field estimate of the TH distribution (see Fig. 4a).
However, with the increase of the density of the buses,
the difference between these two estimates increases (see
Fig. 4b).

As noted earlier, the TH distribution in the BRMPU
changes continuously with the variation of λ; the results
for λ = 0 and λ = 1 are identical to those in the NaSch
model with q = α and q = β, respectively.

In Figure 5 we compare the 2-cluster analytic estimate
of the TH distribution in the BRMPU (approximated as
the extended NaSch model) for three different values of
Λ, namely, Λ = 0.01, 0.10, 0.50, with the corresponding
numerical data we have obtained from direct computer
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Fig. 5. The TH distributions in the BRMPU calculated analytically at densities (a) c = 0.5 (b) c = 0.1. The symbols
+,×, (∗) correspond to the TH distributions in the BRMPU, obtained analytically, for Λ = 0.01, 0.10, 0.50, respectively, in
the 2-cluster approximation while the symbols �, , ◦ correspond to the TH distributions in the BRMPU, obtained through
computer simulations, for λ = 0.01, 0.10, 0.50, respectively. The common parameters are α = 0.9 and β = 0.5. The continuous
lines joining these points serve merely as guides to the eye. Note also the different scales along both the axes in (a) and (b).

simulations of the BRMPU model. Figure 5a shows the
comparison for the higher density value c = 0.5. We note
very good agreement between the 2-cluster estimates and
the computer simulation data. Similar comparison at a
lower density c = 0.1 is shown in Figure 5b. The poor
agreement between the 2-cluster estimate and simulation
data for the TH distribution in the BRMPU at low densi-
ties is a consequence of the fact that at low densities, the
vehicles in a finite system form a cluster in the steady-state
where there is at most one or two empty sites in between
each pair of vehicles. It is well-known that the 2-cluster
approximation scheme is not good enough for such states
where correlation extends over distances which are much
longer than what can be captured by a 2-cluster approxi-
mation. On the other hand, at higher densities there is no
clustering of the buses in the steady-state of the BRMPU
and the physics of the system is very similar to that in the
steady-states of the NaSch model. This is because most of
the buses stop on account of another bus at the next site,
rather than due to waiting passengers.

Nevertheless, since the states with clusters of buses are
metastable in infinitely long samples of BRMPU, the 2-
cluster approximation is expected to yield good estimates
for the stable steady-states of the BRMPU even at low
densities. However, since it is extremely difficult (requires
very long simulation time) to achieve these stable steady-
states in any computer simulation at small λ we have not
been able to demonstrate this explicitly.

5 Kinetics in the BRMPU

In traffic models like BRMPU, the kinetics are governed
by two coupled fields, local passenger density φi(t) and
local bus density σi(t). In this paper a binary approxima-
tion (zero or nonzero) to the φi(t) field is made. σi(t) is
globally conserved and φi(t) is a nonconserved field. It is
not clear whether the kinetics seen in our simulations of
BRMPU and models Y and Z are derivable from a free
energy functional. We are currently inquiring into such a
possibility. If this turns out to be the case, then the model
of kinetics appropriate to our simulations is model C [27]
in the Halperin-Hohenberg classification scheme of critical
dynamics.

Let us define the correlation function

C(r, t) =
[

1
L

L∑
i=1

σi(t)σi+r(t)− c2
]

(15)

where t = 0 corresponds to the initial state. The symbol[
.
]

indicates average over random initial conditions. By
definition, C(r, t) vanishes in the absence of any correla-
tion in the occupation of the sites by the buses. Also at
any time t, C(r = 0, t) = c(1−c). This correlation function
has been calculated earlier for the NaSch model analyti-
cally for vmax = 1 [28] and numerically for higher values
of vmax. However, the nature of this correlation function
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Fig. 6. The normalized correlation function G(r, t) in the
BRMPU plotted against r for (from left to right) t = 5 × 103

(solid line), t = 105 (long dashes), t = 106 (short dashes),
t = 3 × 106 (dots), t = 5 × 106 (dashed-dotted line) at
a density c = 0.1. The values of the other parameters are
λ = 0.01, α = 0.9, β = 0.5.

in the BRMPU is expected to differ qualitatively, par-
ticularly at low densities, from that in the NaSch model
because of the formation of clusters in the steady-state of
the BRMPU.

We compute C(r, t) during the time-evolution of the
system from random initial states. Our simulations for the
time evolution are done only for one set of parameters:
c = 0.1, λ = 0.01, α = 0.9 and β = 0.5. In Figure 6 we
plot the normalized correlation function

G(r, t) = C(r, t)/C(r = 0, t) = C(r, t)/(c(1− c)) (16)

as a function of r for values of t up to 5× 106.
The value r = R corresponding to the first zero-

crossing of G(r, t) is taken as a measure of the typical
size of the clusters of buses at time t [29]. The fact that R
increases with t indicates the coarsening of these clusters.
It is worth mentioning here that in systems with conserved
order parameters (the so-called model B, of which the bi-
nary alloy is a physical realization) the coarsening follows
the Lifshitz-Slyozov law R(t) ∼ t1/3. In the case of the
BRMPU, R(t) may appear to follow the same Lifshitz-
Slyozov law if the data up to t ' 106 are shown on a
log-log plot (see Fig. 7). However, the upward turn of the
data beyond t ' 106 in Figure 7 indicates more subtle
features of this growth. In fact, fitting the raw data R(t)
to the curve

R(t) = R0 +At1/2 (17)

10

100

1000

10000

1000 10000 100000 1e+06 1e+07
R

t

Fig. 7. The log-log plot of R(t) in the BRMPU at c = 0.1. The
values of the other parameters are λ = 0.01, α = 0.9, β = 0.5.
The dashed (top) and dotted (bottom) lines have slopes of 1/2
and 1/3 respectively.

we have estimated the parameters R0 and A. We found
that R0 ' 55 and A ' 0.2. If the growth of R(t), indeed,
follows the law (17) then the t1/2 growth law is expected
to become clearly visible directly in Figure 7 for times long
enough to satisfy the condition At1/2 >> R0, i.e., for t�
105. This argument, together with our estimate R0 ' 55,
explains why the true growth law (17) can be anticipated
in Figure 7 only beyond t ' 106. In fact, plotting R(t)
against t1/2 and comparing with 55 + 0.2t1/2 in Figure 8
we do, indeed, see clear evidence of the t1/2 growth for
t� 105.

Finally, in Figure 9 we plot the normalized correlation
function G against the scaled variable r/R(t). Since the
data for t as widely separated as t = 5×103 to t = 5×106

superpose, the validity of dynamic scaling [29] is convinc-
ing for kinetics of the BRMPU model. The t1/2 growth in
our BRMPU model that is akin to model C [27] implies
that it is the nonconserved passenger density field φ that
is driving the kinetics, for the parameter set that we have
simulated.

6 Conclusions

The models and simulations presented in this paper were
inspired by the work on BRMRSU in reference [16]. The
model in [16] uses random sequential updating (RSU),
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Fig. 8. The discrete data points represent R(t) in the BRMPU
at c = 0.1 plotted against t1/2. The continuous solid line cor-
responds to 55 + 0.2t1/2. The values of the other parameters
are λ = 0.01, α = 0.9, β = 0.5.

whereas our complimentary study is based on parallel up-
dating (PU). As expected, the properties of the steady
states including the dependence of average velocity and
current on the particle density are similar (not explic-
itly displayed in figures). We have in addition computed
and analytically obtained (in the 2-cluster approximation)
the time headway (TH) distributions for a wide range of
parameters. At moderate and high densities, the simula-
tion and analytic results agree well; but the comparison
fails at low densities. We have also studied kinetics of the
BRMPU which is also complimentary to that done for the
BRMRSU in reference [16]. We find the bus clusters to
grow in size as t1/2. This shows that the growth exponent
is robust with respect to the updating schemes. We have
also computed the equal time pair correlation function of
the local bus density, and find that it obeys a dynamical
scaling ansatz: G(r, t) = G(r/R(t)), where R(t) is the bus
cluster size.

We have also found connection between the mod-
els of BRMPU type and the NaSch model. The NaSch
model is the minimal CA model of vehicular traffic
on idealized single-lane highways. This model has been
extended [21–24,30–32] in various ways to incorporate
some aspects of real traffic which are not captured by the
minimal model. All the bus route models which we have
considered in this paper, namely, the BRMPU, model Y
and model Z, may be regarded as extensions of the NaSch
model with vmax = 1. In each of these models the dynam-
ics of the vehicles are coupled to another non-conserved
field, namely, the passenger density field φ, resulting in
space- and time-dependent hopping rates of the vehicles.
However, there is a difference in the length and time scales
in the bus route models and in the NaSch model. In the
NaSch model the motion of the vehicles from one cell to
the next is described on a time scale which is roughly
the reaction time of each driver. In contrast, the lat-
tice constant in the BRM is of the order of the distance
between successive stops on the bus route. Thus, each
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Fig. 9. The normalised correlation function G in the BRMPU
at c = 0.1, for the same five values of t as in the Figure 6, are
plotted against r/R(t). The values of the parameters λ, α and
β are also identical to those in the Figure 6.

time step corresponds to a much longer real time than
that in the NaSch model. In other words, the interactions
of the buses with the traffic, on its way from one stop
to the next, are included in the BRM models only through
the phenomenological rate constant α. It would be inter-
esting to extend the bus route models further by includ-
ing the interaction between a bus and other vehicles as
it moves from one stop to the next. Inter-vehicle interac-
tions are a natural ingredient of the NaSch model, and this
prescription can be incorporated in the bus route models.
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